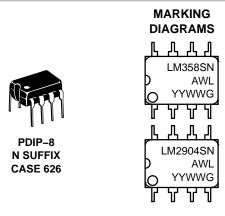
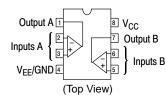
Single Supply Dual Operational Amplifiers

Utilizing the circuit designs perfected for Quad Operational Amplifiers, these dual operational amplifiers feature low power drain, a common mode input voltage range extending to ground/V_{EE}, and single supply or split supply operation. The LM358S and LM2904S are half of the LM324S and LM2902S, respectively.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.


Features

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com


LMxxxx = Specific Device Code A, AL = Assembly Location WL = Wafer Lot Y, YY = Year W, WW = Work Week G or • = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

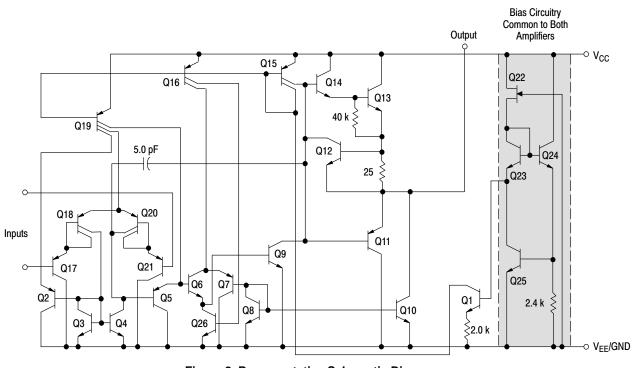


Figure 2. Representative Schematic Diagram (One–Half of Circuit Shown)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltages	Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	32 ±16	Vdc
Input Differential Voltage Range (Note 1)		V _{IDR}	±32	Vdc
Input Common Mode Voltage Range (Note 2)		V _{ICR}	-0.3 to 32	Vdc
Output Short Circuit Duration		t _{SC}	Continuous	
Junction Temperature		TJ	150	°C
Thermal Resistance, Junction-to-Air (Note 3)	Case 626	$R_{ hetaJA}$	161	°C/W
Storage Temperature Range		T _{stg}	-65 to +150	°C
Operating Ambient Temperature Range	LM358S LM2904S	Τ _Α	0 to +70 -40 to +105	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Split Power Supplies.

For supply voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage.
 All R_{0JA} measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.

ELECTRICAL CHARACTERISTICS (V _{CC} = 5.0 V, V _{EE} = GND, T _A = 25°C, unless otherwise noted	ed.)
---	------

		LM358S			
Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}				mV
V_{CC} = 5.0 V to 30 V, V_{IC} = 0 V to V_{CC} –1.7 V, V_O \simeq 1.4 V, R_S = 0 Ω					
$T_A = 25^{\circ}C$		-	2.0	7.0	
$T_A = T_{high}$ (Note 4)		-	-	9.0	
$T_A = T_{low}$ (Note 4)		-	-	9.0	
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{IO} / \Delta T$	-	7.0	-	μV/°C
$T_A = T_{high}$ to T_{low} (Note 4)					
Input Offset Current	I _{IO}	-	5.0	50	nA
$T_A = T_{high}$ to T_{low} (Note 4)		-	-	150	
Input Bias Current	I _{IB}	-	-45	-250	nA
$T_A = T_{high}$ to T_{low} (Note 4)		-	-50	-500	
Average Temperature Coefficient of Input Offset Current $T_A = T_{high}$ to T_{low} (Note 4)	$\Delta I_{IO} / \Delta T$	-	10	-	pA/∘C
Input Common Mode Voltage Range (Note 5), V _{CC} = 30 V	VICR	0	_	28.3	V
V_{CC} = 30 V, $T_A = T_{high}$ to T_{low}		0	_	28	
Differential Input Voltage Range	V _{IDR}	-	-	V _{CC}	V
Large Signal Open Loop Voltage Gain	A _{VOL}				V/mV
$R_L = 2.0 \text{ k}\Omega$, $V_{CC} = 15 \text{ V}$, For Large V_O Swing,		25	100	_	
$T_A = T_{high}$ to T_{low} (Note 4)		15	_	-	
Channel Separation	CS	_	-120	-	dB
1.0 kHz \leq f \leq 20 kHz, Input Referenced					
$\begin{array}{l} \mbox{Common Mode Rejection} \\ R_S \leq 10 \ k\Omega \end{array}$	CMR	65	70	-	dB
Power Supply Rejection	PSR	65	100	-	dB
Output Voltage–High Limit	V _{OH}				V
$V_{CC} = 5.0 \text{ V}, \text{ R}_{L} = 2.0 \text{ k}\Omega, \text{ T}_{A} = 25^{\circ}\text{C}$		3.3	3.5	-	
V_{CC} = 30 V, R _L = 2.0 kΩ, T _A = T _{high} to T _{low} (Note 4)		26	_	_	
$V_{CC} = 30 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega, \text{ T}_{A} = \text{T}_{high} \text{ to } \text{ T}_{low} \text{ (Note 4)}$		27	28	_	
Output Voltage–Low Limit $V_{CC} = 5.0 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega, \text{ T}_{A} = \text{T}_{high} \text{ to } \text{T}_{low} \text{ (Note 4)}$	V _{OL}	-	5.0	20	mV
Output Source Current	I _O +				mA
V _{ID} = +1.0 V, V _{CC} = 15 V	Ũ	20	45	-	
Output Sink Current	I _O –				
$V_{ID} = -1.0 \text{ V}, V_{CC} = 15 \text{ V}$	Ŭ	10	30	_	mA
$V_{ID} = -1.0 \text{ V}, V_O = 200 \text{ mV}$		12	40	_	μA
Output Short Circuit to Ground (Note 6)	I _{SC}	_	45	60	mA
Power Supply Current (Total Device) $T_A = T_{high}$ to T_{low} (Note 4)	I _{CC}				mA
$V_{CC} = 30 \text{ V}, \text{ V}_{O} = 0 \text{ V}, \text{ R}_{L} = \infty$		_	0.5	3.0	
$V_{CC} = 5 V, V_{O} = 0 V, R_{L} = \infty$			0.3	1.2	
$v_{\rm CC} = 0 v, v_{\rm O} = 0 v, \kappa_{\rm L} = \infty$		-	0.3	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

a LM358S: T_{low} = 0°C, T_{high} = +70°C
LM2904S: T_{low} = -40°C, T_{high} = +105°C
5. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} - 1.7 V.
6. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous other and the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous other and a simultaneous other

simultaneous shorts on all amplifiers.

ELECTRICAL CHARACTERISTICS (V _{CC} = 5.0 V, V _{EE} = GND, T _A = 25°C, unless otherwise noted	ed.)
---	------

			LM2904	6	
Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage V_{CC} = 5.0 V to 30 V, V_{IC} = 0 V to V_{CC} –1.7 V, V_O \simeq 1.4 V, R_S = 0 Ω	V _{IO}				mV
T _A = 25°C		_	2.0	7.0	
$T_A = T_{high}$ (Note 7)		_	-	10	
$T_A = T_{low}$ (Note 7)		_	-	10	
Average Temperature Coefficient of Input Offset Voltage $T_A = T_{high}$ to T_{low} (Note 7)	$\Delta V_{IO} / \Delta T$	-	7.0	-	μV/°C
Input Offset Current	I _{IO}	-	5.0	50	nA
$T_A = T_{high}$ to T_{low} (Note 7)		_	45	200	
Input Bias Current	I _{IB}	-	-45	-250	nA
$T_A = T_{high}$ to T_{low} (Note 7)		_	-50	-500	
Average Temperature Coefficient of Input Offset Current $T_A = T_{high}$ to T_{low} (Note 7)	$\Delta I_{IO} / \Delta T$	-	10	-	pA/∘C
Input Common Mode Voltage Range (Note 8), $V_{CC} = 30 V$	V _{ICR}	0	_	28.3	V
V_{CC} = 30 V, T_A = T_{high} to T_{low}		0	-	28	
Differential Input Voltage Range	V _{IDR}	-	-	V _{CC}	V
Large Signal Open Loop Voltage Gain	A _{VOL}				V/mV
R_L = 2.0 kΩ, V _{CC} = 15 V, For Large V _O Swing,		25	100	-	
$T_A = T_{high}$ to T_{low} (Note 7)		15	-	-	
Channel Separation 1.0 kHz \leq f \leq 20 kHz, Input Referenced	CS	-	-120	_	dB
$\begin{array}{l} \mbox{Common Mode Rejection} \\ \mbox{R}_S \leq 10 \ \mbox{k}\Omega \end{array}$	CMR	50	70	-	dB
Power Supply Rejection	PSR	50	100	-	dB
Output Voltage-High Limit	V _{OH}				V
V_{CC} = 5.0 V, R _L = 2.0 kΩ, T _A = 25°C		3.3	3.5	-	
V_{CC} = 30 V, R_L = 2.0 kΩ, T_A = T_{high} to T_{low} (Note 7)		26	-	-	
V_{CC} = 30 V, R_L = 10 k Ω , T_A = T_{high} to T_{low} (Note 7)		27	28	-	
Output Voltage–Low Limit V_{CC} = 5.0 V, R _L = 10 kΩ, T _A = T _{high} to T _{low} (Note 7)	V _{OL}	-	5.0	20	mV
Output Source Current V_{ID} = +1.0 V, V_{CC} = 15 V	I _{O+}	20	45	-	mA
Output Sink Current	I _{O –}	1			1
$V_{ID} = -1.0 \text{ V}, V_{CC} = 15 \text{ V}$		10	30	-	mA
$V_{ID} = -1.0 \text{ V}, V_O = 200 \text{ mV}$		_	-	-	μA
Output Short Circuit to Ground (Note 9)	I _{SC}	-	45	60	mA
Power Supply Current (Total Device) $T_A = T_{high}$ to T_{low} (Note 7)	Icc				mA
$V_{CC} = 30 \text{ V}, \text{ V}_{O} = 0 \text{ V}, \text{ R}_{L} = \infty$		_	0.5	3.0	
$V_{CC} = 5 \text{ V}, \text{ V}_{O} = 0 \text{ V}, \text{ R}_{L} = \infty$		_	0.3	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
7. LM358S: T_{low} = 0°C, T_{high} = +70°C LM2904S: T_{low} = -40°C, T_{high} = +105°C
8. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} - 1.7 V.
9. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all applicant.

simultaneous shorts on all amplifiers.

CIRCUIT DESCRIPTION

The LM358S and LM2904S are made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single–ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

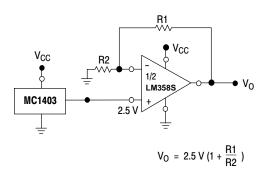


Figure 3. Voltage Reference

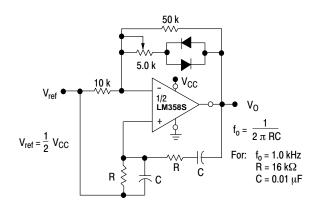
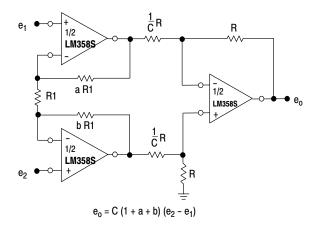
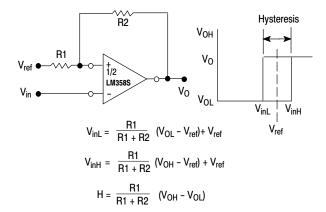




Figure 4. Wien Bridge Oscillator

Figure 5. High Impedance Differential Amplifier

Figure 6. Comparator with Hysteresis

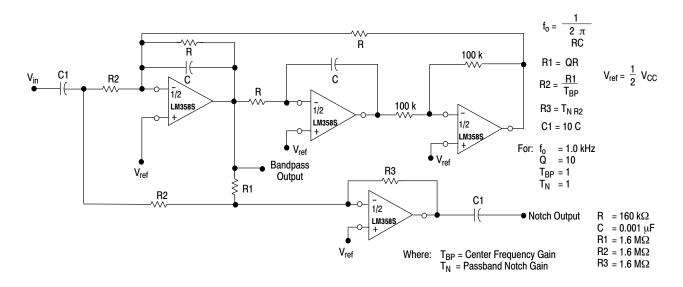
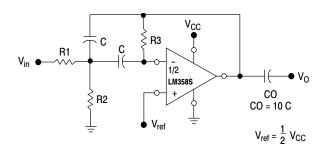



Figure 7. Bi–Quad Filter

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value fo, C

Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier. $\frac{Q_0 f_0}{BW} < 0.1$

Where fo and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 9. Multiple Feedback Bandpass Filter

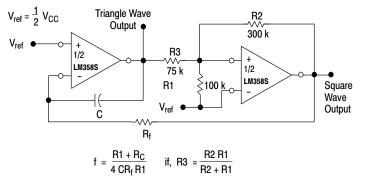
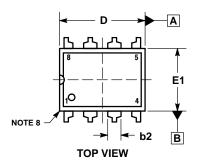
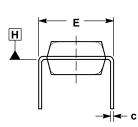
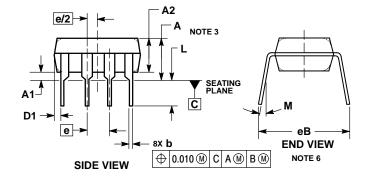


Figure 8. Function Generator


ORDERING INFORMATION


DeviceOperating Temperature RangePackageShipping[†]LM358SNG0°C to +70°CPDIP-8
(Pb-Free)50 Units / RailLM2904SNG-40°C to +105°CPDIP-8
(Pb-Free)50 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

PDIP-8 CASE 626-05 **ISSUE N**

END VIEW WITH LEADS CONSTRAINED NOTE 5

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-2
- 3. AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH 4
- OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE
- 6.
- DIMENSION ESTS MEASORED AT THE LEAD THES WITH THE LEADS UNCONSTRAINED.
 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CONTED).

CORM	VERS).				
	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α		0.210		5.33	
A1	0.015		0.38		

DIM	MIN	MAX	MIN	MAX	
Α		0.210		5.33	
A1	0.015		0.38		
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.35	0.56	
b2	0.060) TYP	1.52 TYP		
С	0.008	0.014	0.20	0.36	
D	0.355	0.400	9.02	10.16	
D1	0.005		0.13		
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
е	0.100	BSC	2.54 BSC		
eB		0.430		10.92	
L	0.115	0.150	2.92	3.81	
М		10°		10°	

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative