
Model: FXO-LC32 SERIES

LVDS 3.2 x 2.5mm 2.5V Oscillator

Freq: 0.75 MHz to 1.0GHz

Features

- XTREMELY Low Jitter
- Low Cost
- XPRESS Delivery
- Frequency Resolution to six decimal places
- Stabilities to ± 25 PPM
- -20 to +70°C or -40 to +85°C operating temperatures
- Tri-State Enable / Disable Feature
- Industry Standard Package, Footprint & Pin-Out
- Fully RoHS and REACH compliant
- Gold over Nickel Termination Finish
- Serial ID with Comprehensive Traceability

For more information -- Click on the drawing

Description

The Fox XPRESSO Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. XPRESSO utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.

With the XPRESS lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XpressO is an excellent choice over the conventional technologies.

nage

Applications

- ANY application requiring an oscillator
- SONET
- Ethernet
- Storage Area Network
- Broadband Access
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment
- Fiber Channel

Contents

	Pugu
Model Selection & Part Number Guide	2
Electrical Characteristic	3
Absolute Maximums	3
Output Wave Characteristics	4
Phase Noise	5
Jitter	5
Pin Assignment	6
Recommended Circuit	6
Reflow	6
Mechanical Drawing and Pad Layout	7
Tape and Reel Specification	8
Label	8
Traceability - LOT Number & Serial Identification	9
SGS Report 10	~13
Mechanical Test	14
Burn-In Test	14
MTTF / FITS calculations	15
Other XPRESSO Links	16
Fox Contact Information	16

FÖX

Model Selection Guide & Fox Part Number

STEP #1: Customer selects the Model Description and provides to Fox Customer Service

Model Description

 $FXO - \underline{L} C 3 \underline{2} \underline{5} R - \underline{6} \underline{2} \underline{2} . \underline{0} \underline{8}$ Frequency (in MHz) Resolutions to 6 places past the decimal point

H = HCMOS

C = Ceramic

3 = 3.3 V

 $0 = \pm 100 \text{ PPM}$

blank = -20°C to +70°C

L = LVDS

Q = Quartz

2 = 2.5 V $3 = 3.2 \times 2.5$ mm

 $5 = \pm 50 \text{ PPM}$

 $R = -40^{\circ}C \text{ to } +85^{\circ}C$

P = LVPECL

 $5 = 5 \times 3.2$ mm $7 = 7 \times 5 \text{mm}$

 $6 = \pm 25 \text{ PPM } (-20 \sim +70^{\circ}\text{C})$

M = LVDS (pin 2 E/D)

Q = LVPECL (pin 2 E/D)

X = HCMOS (comp 2nd Output)

STEP #2: The Fox Customer Service team provides a customer specific Part Number for use on their Bill Of Materials (BOM).

Fox Part Number (The assigned Fox Part Number must be on the BOM – not the above Model Description) (This will ensure receipt of the proper part)

769A - <u>6 2 2 . 0 8</u> - <u>2</u>

The 1st Field Product Code # 769A = FXO-LC32

769 = FXO-LC33

770B = FXO-LC52

770 = FXO-LC53

770C = FXO-MC52770A = FXO-MC53 The 2nd Field

The Customer's Frequency

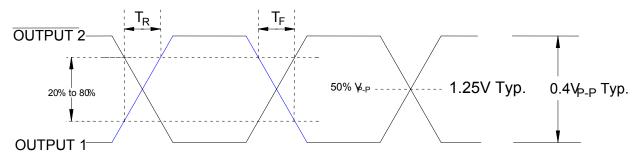
Fox Internally Generated Number (If any specification changes, the last digits change) (The same specs for a different customer also changes the last digits)

This example, FXO-LC325R-622.08 = LVDS Output, Ceramic, 3.2 x 2.5mm Package, 2.5V, ±50 PPM Stability, -40 to +85°C Temperature Range, at 622.08 MHz

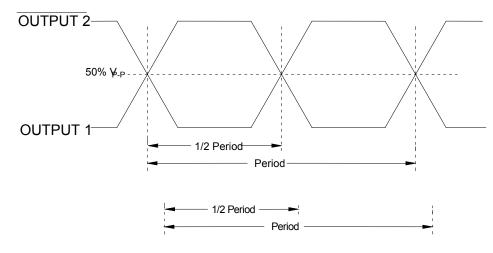
Floatrical Characteristics					
Electrical Characteristics					
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)		
Frequency Range	Fo		0.750 MHz to 1.0 GHz		
Frequency Stability ¹		0.75 ~ 630.000 MHz (-20 to +70°C) 0.75 ~ 630.000 MHz (-40 to +85°C) 630.000+ MHz ~ 1.000 GHz (-20 to +70°C) 630.000+ MHz ~ 1.000 GHz (-40 to +85°C)	100, 50, 25* PPM 100, 50 PPM 100, 50 PPM 100 PPM		
Temperature Range	T _O	Standard operating Optional operating Storage	-20°C to +70°C -40°C to +85°C -55°C to +125°C		
Supply Voltage	V_{DD}	Standard	2.5V ± 5%		
Input Current (@ 100 Ohm LOAD)	I _{DD}	0.75 ~ 20.000 MHz 20.000+ ~ 220.000 MHz 220.000+ ~ 630.000 MHz 630.000+ MHz ~ 1.000 GHz	26 mA 34 mA 44 mA 65 mA		
Output Load		Standard	100 Ohms Typ.		
Start-Up Time	Ts		10 mS		
Output Enable / Disable Time			100 nS		
Moisture Sensitivity Level	MSL	JEDEC J-STD-20	1		
Termination Finish			Au		

¹Inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration. *Excludes aging.

Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested. Operation is only guaranteed for voltage and temperature specifications in Electrical Characteristics section.)				
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)	
Input Voltage	V_{DD}		-0.5V to +5.0V	
Operating Temperature	T _{AMAX}		–55°C to +105°C	
Storage Temperature	T _{STG}		–55°C to +125°C	
Junction Temperature			125°C	
ESD Sensitivity	HBM	Human Body Model	> 1 kV	

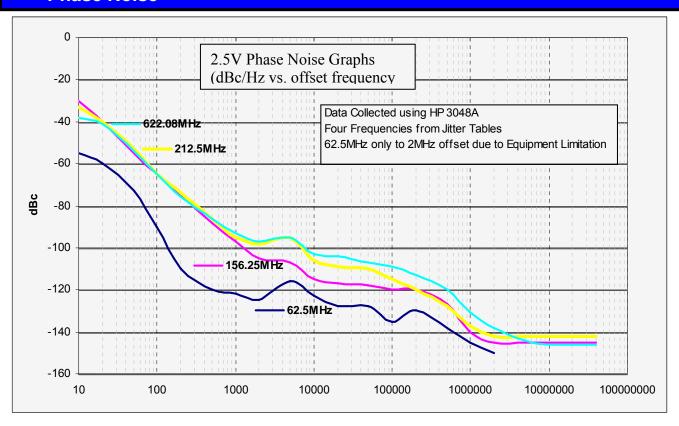


Output Wave Characteristics				
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)	
Differential Output Voltage	V _{OD}	0.75 MHz to 1.0 GHz	0.4V Typ.	
Output Offset Voltage	Vos	Volts DC	1.25V Typ	
Output Symmetry (See Drawing Below)		@ 50% V _{P-P} Level	45% ~ 55%	
Output Enable (PIN # 1) Voltage Note1	V _{IH}		≥ 70% V _{DD}	
Output Disable (PIN # 1) Voltage Note1	V_{IL}		≤ 30% V _{DD}	
Cycle Rise Time (See Drawing Below)	T _R	20%~80% Vp-p	400 pS	
Cycle Fall Time (See Drawing Below)	T _F	80%~20% Vp-p	400 pS	


Note1 An optional PIN # 2 as Enable / Disable is available – see Model Selection Guide (page 2)

Rise Time / Fall Time Measurements

Oscillator Symmetry


Ideally, Symmetry should be 50/50 for 1/2 period -- Other expressions are 45/55 or 55/45

FÖX

Phase Noise

Jitter is frequency dependent. Below are typical values at select frequencies.

LVDS Phase Jitter & Time Interval Error (TIE)					
Frequency	Phase Jitter (12kHz to 20MHz)	TIE (Sigma of Jitter Distribution)	Units		
62.5 MHz	0.9	2.9	pS RMS		
156.25 MHz	1.1	3.5	pS RMS		
212.5 MHz	1.2	3.9	pS RMS		
622.08MHz	0.8	2.4	pS RMS		

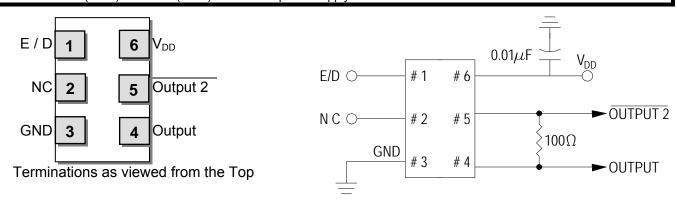
Phase Jitter is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; V_{DD} = 2.5V.

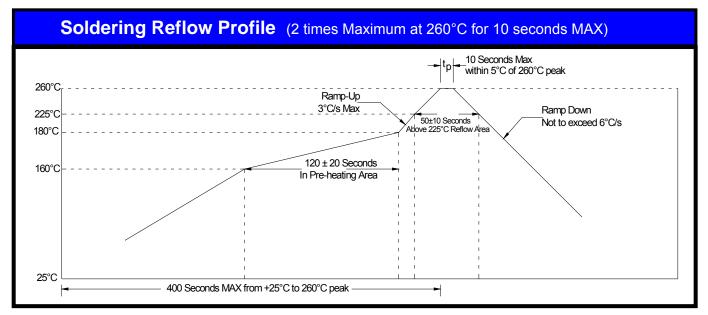
TIE was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; V_{DD} = 2.5V.

Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

LVDS Rand	LVDS Random & Deterministic Jitter Composition				
Frequency	Random (Rj) (pS RMS)	Deterministic (Dj)	Total Jitter (Tj) (14 x Rj) + Dj		
62.5 MHz	1.3	9.6	28.6 pS		
156.25 MHz	1.4	9.8	29.4pS		
212.5 MHz	1.4	11.4	30.9 pS		
622.08 MHz	1.0	13.05	27.5 pS		

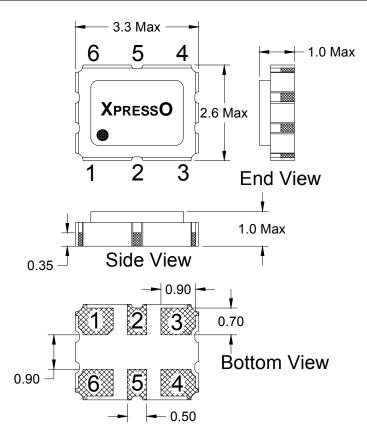
Rj and Dj, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software.

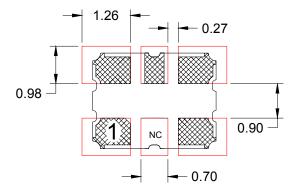

Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)


Pin	Pin Description and Recommended Circuit				
Pin#	Name	Туре	Function		
1	E/D ¹	Logic	Enable / Disable Control of Output (0 = Disabled)		
2	NC		No Connection – Leave OPEN		
3	GND	Ground	Electrical Ground for V _{DD}		
4	Output	Output	LVDS Oscillator Output		
5	Output 2	Output	Complementary LVDS Output		
6	V_{DD}^{2}	Power	Power Supply Source Voltage		

NOTES:

- ¹ Includes pull-up resistor to V_{DD} to provide output when the pin (1) is No Connect.
- Installation should include a $0.01\mu F$ bypass capacitor placed between V_{DD} (Pin 6) and GND (Pin 3) to minimize power supply line noise.


Enable / Disable Control	
Pin # 1 (state)	Output (Pin # 4, Pin # 5)
OPEN (No Connection)	ACTIVE Output
"1" Level V _{IH} ≥ 70% V _{DD}	ACTIVE Output
"0" Level V _{IL} ≤ 30% V _{DD}	High Impedance

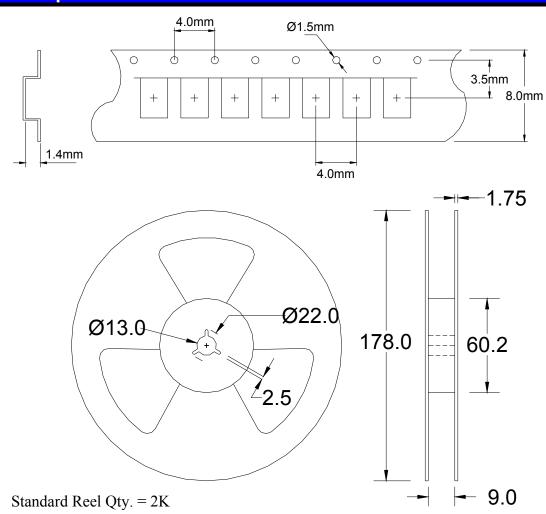

Mechanical Dimensional Drawing & Pad Layout

Actual part marking is depicted.

See **Traceability** (pg. 9) for more information

Recommended Solder Pad Layout

Pin Connections


#1 E/D #4 V_{OUT 1} #2 N.C. #5 V_{OUT 2} #3 GND #6 V_{DD}

Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary

Tape and Reel Dimensions

Labeling (Reels and smaller packaging are labeled with the below)

An additional identification code is contained internally if tracking should ever be necessary

Traceability - LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO part. XPRESSO parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO part. The Serial ID is unique for each and every XPRESSO part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO part:

- Equipment that the XPRESSO part was configured on
- Raw material used to configure the XPRESSO part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO part produced and can then obtain the information from above within 24 hours

Party (SGS) Material Report

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 1 of 4

FOX ELECTRONICS

5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

The following sample(s) was/were submitted and identified by/on behalf of the client as :

Sample Description : XPRESSO CERAMIC OSCILLATORS Style/Item No. : SEAM SEAL CLOCK OSCILLATOR

Buyer/Order No. : 47454 : 2008/06/12 Sample Receiving Date

Testing Period : 2008/06/12 TO 2008/06/19

Test Result(s) Please refer to next page(s).

Chenyu Kung / Operation Manager Signed for and on behalf of SGS TAIWAN LTD.

Chemical Laboratory – Taipei

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 能非另有规则,此罪告結果僅對規則之權益責責,本際色来根本公司書面許可,不可能的規則。
This Test Report is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.sgs.com/lems_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this Test Report is advised that information conditions the refer to the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not excensive parties to a transaction from exensing all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

 SGS Taiwan Ltd.
 No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipel County, Taiwan / 台北解五股厂集高五槽路 33 號 台灣檢驗科技股份有限公司
 1 (886-2) 2299-3939
 I (886-2) 2299-3237
 www.twsgs.com

f (886-2) 2299-3237 Member of the SGS Group

Party (SGS) Material Report (continued)

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 2 of 4

FOX ELECTRONICS

5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

Test Result(s)

PART NAME NO.1 MIXED ALL PARTS

Test Item (s):	Unit	Method	MDL	Result
rest item (s).	Onit	Metrod	WIDL	No.1
Cadmium (Cd)	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Cadmium by ICP-AES.	2	n.d.
Lead (Pb)	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Lead by ICP-AES.	2	n.d.
Mercury (Hg)	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Mercury by ICP-AES.	2	n.d.
Hexavalent Chromium Cr(VI) by alkaline extraction	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Hexavalent Chromium for non- metallic samples by UV/Vis Spectrometry.	2	n.d.
Halogen		With reference to BS EN 14582:2007. Analysis was performed by IC method for F , CI , Br, I content.	202	
Halogen-Fluorine (F) (CAS No.: 007782-41-4)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Fluorine content.	50	n.d.
Halogen-Chlorine (CI) (CAS No.: 007782-50-5)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Chlorine content.	50	n.d.
Halogen-Bromine (Br) (CAS No.: 007726-95-6)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Bromine content.	50	n.d.
Halogen-lodine (I) (CAS No.: 007553-56-2)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Iodine content.	50	n.d.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 除非另有認明,此無合結果僅對機式之便是負責。本報告未經本公司書面許可,不可配份複製。
This Test Report is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.sgs.com/lems_and_conditions.htm. Attention is drawn to the limitation of its little limitation or its individual pursuance defined therein. Any holder of this Test Report is advised that information contained hereon reflects the Company's indings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exponerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司 t (886-2) 2299-3939

SGS Taiwan Ltd. No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipel County, Taiwan / 台北縣五駁工樂面五樓路 33號

f (886-2) 2299-3237 www.tw.sgs.com

3rd Party (SGS) Material Report (continued)

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 3 of 4

FOX ELECTRONICS
5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

Test Item (s):	Unit	Method	MDL	Result
10.53	Oint	Mediod	MDL	No.1
Sum of PBBs	ľ		27	n.d.
Monobromobiphenyl	1	I T	5	n.d.
Dibromobiphenyl	1	I I	5	n.d.
Tribromobiphenyl	1	l E	5	n.d.
Tetrabromobiphenyl	1	I f	5	n.d.
Pentabromobiphenyl	1	1	5	n.d.
Hexabromobiphenyl	1	I T	5	n.d.
Heptabromobiphenyl	1	I T	5	n.d.
Octabromobiphenyl	1	I T	5	n.d.
Nonabromobiphenyl	1	l f	5	n.d.
Decabromobiphenyl	1	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of PBB and PBDE by GC/MS.	5	n.d.
Sum of PBDEs (Mono to Nona)	mg/kg		-	n.d.
Monobromodiphenyl ether			5	n.d.
Dibromodiphenyl ether			5	n.d.
Tribromodiphenyl ether	1		5	n.d.
Tetrabromodiphenyl ether	1		5	n.d.
Pentabromodiphenyl ether	1		5	n.d.
Hexabromodiphenyl ether	1		5	n.d.
Heptabromodiphenyl ether		l t	5	n.d.
Octabromodiphenyl ether		1	5	n.d.
Nonabromodiphenyl ether			5	n.d.
Decabromodiphenyl ether			5	n.d.
Sum of PBDEs (Mono to Deca)			07	n.d.

Note: 1. mg/kg = ppm

2. n.d. = Not Detected

3. MDL = Method Detection Limit

4. "---" = Not Conducted

5. " - " = Not Regulated

The sample(s) was/were analyzed on behalf of the applicant as mixing sample in one testing.The above result(s) was/were only given as the informality value.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 脸非男有說明。此集告結果權對異就之樣是負責,本藥色末稿本公司書面許可,不可能份權數。
This Test Report is sessed by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.ags.com/dems.and.conditions.irm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this Test Report is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client's instructions, if any. The Company's sole responsibility is to its Client's instructions, if any. The Company's account of the content of appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司

SGS Taiwan Ltd. No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipel County, Taiwan / 台北縣五駅工業區五槽路 33號

t (886-2) 2299-3939 f (886-2) 2299-3237 www.tw.sgs.com

Member of the SGS Group

Party (SGS) Material Report (continued)

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 4 of 4

FOX ELECTRONICS 5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

** End of Report **

Olumbur 1cm

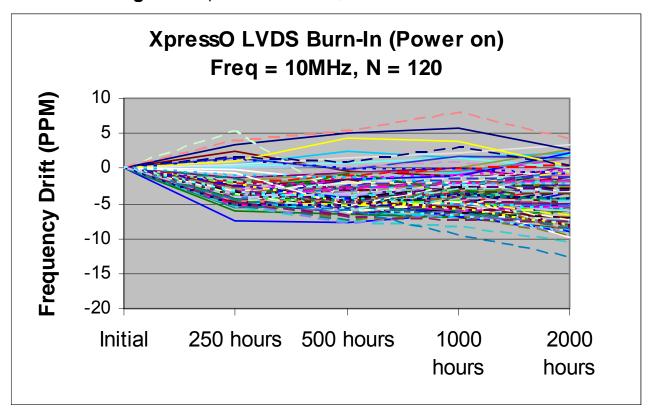
Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 除非异有按明,此能已結果使封锡式之樣是负责,本籍色来根本公司書面持可,不可是仍想要。
This Test Report is is sued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at https://www.scs.com/tems_and_conditions.irm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this Test Report is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not experience to a transaction from exercising at their rights and obligations under the transaction documents. Any

unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司

SGS Taiwan Ltd. No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipei County, Taiwan / 台北縣五駅工業區五槽路 33號 t (886-2) 2299-3939 f (886-2) 2299-3237 www.tw.sgs.com

Member of the SGS Group



Mechanical Testing

Parameter	Test Method
Mechanical Shock	Drop from 75cm to hardwood surface – 3 times
Mechanical Vibration	10~55Hz, 1.5mm amplitude, 1 Minute Sweep 2 Hours each in 3 Directions (X, Y, Z)
High Temperature Burn-in	Under Power @ 125°C for 2000 Hours (results below)
Hermetic Seal	He pressure: 4 ±1 kgf / cm ² 2 Hour soak

2,000 Hour Burn-In

Burn-In Testing – under power 2000 Hours, 125°C

MTTF / FITS Calculations

Products are grouped together by process for MTTF calculations. (All XpressO output and package types are manufactured with the same process)

Number of Parts Tested: 360 (120 of each output type: HCMOS, LVDS, LVPECL)

Number of Failures: 0 Test Temperature: 125°C Number of Hours: 2000

MTTF was calculated using the following formulas:

[1.] Device Hours (*devhrs*) = (number of devices) x (hours at elevated temperature in °K)

[2.]
$$MTTF = \frac{devhrs \times af \times 2}{\chi^2}$$

[3.] FITS =
$$\frac{1}{MTTF}$$
 * 10⁹

Where:

Label	Name	Formula/Value
af	Acceleration Factor	$e^{(rac{eV}{k}) imes(rac{1}{t_1}-rac{1}{t_2})}$
eV	Activation Energy	0.40 V
k	Bolzman's Constant	8.62 X 10 ⁻⁵ eV/°K
t ₁		Operating Temperature (°K)
t ₂		Accelerated Temperature (°K)
Θ	Theta	Confidence Level (60% industry standard)
r	Failures	Number of failed devices
Χ ²	Chi-Square	statistical significance for bivariate tabular analysis [table look-up] based on assumed Θ (Theta – confidence) and number of failures (r) For zero failures (60% Confidence): $\chi^2 = 1.830$

DEVICE-HOURS = 360 x 2000 HOURS = 720,000

ACCELERATION FACTOR =
$$e^{(\frac{0.40}{8.625})\times(\frac{1}{298}-\frac{1}{398})}$$
 = 49.91009

MTTF =
$$\frac{720,000 \times 49.91009 \times 2}{1.833}$$
 = 39,209,238 Hours

Failure Rate =
$$\frac{1.833}{720,000 \times 49.91009 \times 2}$$
 = 2.55E-8

FITS = Failure Rate *1E9 = 26

Notes:

Patent Numbers:

US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290;
Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652
China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong #HK1026079, Mexico #232179
US and Foreign Patents Pending

XpressO® Fox Electronics

Contact Information

(USA)-Worldwide Headquarters

Tel: 888-GET-2-FOX

Outside US: +1.239.693.0099,

Fax: +1.239.693.1554

Email: www.foxonline.com/email.htm

Fox Hong Kong

Tel: +852.2854.4285, Fax: +852.2854.4282

Email: www.foxonline.com/email.htm

Fox EMEA

Tel/Fax: +44.1767.312632

Email: www.foxonline.com/email.htm

Fox Japan

Tel: +81.3.3374.2079, Fax: +81.3.3377.5221

Email: www.foxonline.com/email.htm

The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.

